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Ground-Water Geochemistry of Kwajalein Island,
Republic of the Marshall Islands, 1991

By Gordon W. Tribble

Abstract indicate oxic respiration, and sulfate reduction is
indicated by hydrogen sulfide.
Ground water on Kwajalein Island is an The amount of dissolved inorganic carbon

important source of drinking water, particularly  released during organic-matter oxidation is nearly
during periods of low rainfall. Fresh ground water equivalent to the amount of carbonate-mineral dis-
is found as a thin lens underlain by saltwater. Thesplution. Organic-matter oxidation and carbonate-
concentration of dissolved ions increases with  mineral dissolution seem to be most active either in
depth below the water table and proximity to the the unsaturated zone or near the top of the water
shoreline as high-salinity seawater mixes with  table. The most plausible explanation is that high
fresh ground water. The maximum depth of the  amounts of oxic respiration in the unsaturated zone
freshwater lens is 37 ft. generate carbon dioxide, which causes carbonate
Chloride is assumed to be non-reactive undelrninerals to dissolve. Ground water contaminated

the range of geochemical conditions on the atoll. by petroleum hydrocarbons had the highest levels
The concentration of chloride thus is used as a cor2f mineral dissolution and organic respiration
servative constituent to evaluate freshwater-salt- (including sulfate reduction), indicating that bacte-
water mixing within the aquifer. Concentrations of fia are oxidizing the contaminants.

sodium and for the most part, potassium and sul-

fa_te_, also appear to be determin_ed by Conservfitivﬂ\lTRODUCTION

mixing between saltwater and rain. Concentrations

of calcium, magnesium, and strontium are higher Kwajalein Island is a low carbonate island at Kwa-
than expected from conservative mixing; these jalein Atoll in the central Pacific Ocean (fig. 1).

higher concentrations are a result of the dissolutiorDemand for drinking water on the island of Kwajalein
of carbonate minerals. An excess in dissolved inorwas about 300,000 gal/d during 1989-91 and expected
ganic carbon results from carbonate-mineral dissdo rise in response to a growing population. Currently,
lution and from the oxidation of organic matter in about two-thirds of the drinking-water supply comes
the aquifer; the stoichiometric difference betweenfrom rainfall catchment; the balance is pumped from
excess dissolved inorganic carbon and excess bivground-water resources.

lent cations is used as a measure of the amount of Industrial activities on the island have introduced
organic-matter oxidation. Organic-matter oxida- fuel hydrocarbons and organic solvents into the aquifer
tion also is indicated by the low concentration of (U.S. Army Environmental Hygiene Agency, 1990;
dissolved oxygen, high concentrations of nutrients 1991)- These compounds are mobile and can easily con-
and the presence of hydrogen sulfide in many of thdaminate ground-water supplies on Kwajalein Island

water samples. Low levels of dissolved oxygen owing to the shallow depth to water. Many contami-
nants are susceptible to microbial oxidation; thus, an

Introduction 1
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Figure 1. Kwajalein Atoll in the western Pacific Ocean.
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assessment of contaminant threat to fresh ground-water  From the 1890's to 1914, German traders used
supplies needs to consider microbial breakdown as welkKwajalein Island as a copra plantation. The Marshall
as physical transport. A chemical characterization of Islands were taken by Japanin 1914 and formally ceded
aquifer water can be used to determine the overall  to Japan in 1920 at the Versailles Peace Conference. A
extent of microbial activity and determine the potential battle during World War Il culminated in the capture of
for contaminant degradation. the island by U.S. troops in 1944. Following the war,

This report is part of a 1991-92 study, in coopera?he U.S. received the United Nations mandate to admin-

tion with the U.S. Army Space and Strategic Defense ister the Marshall Islandg. Kwajalein was later used as a
Command, Kwajalein Atoll, that focused on the hydrol- 2aS€ t0 support the testing of nuclear weapons at

ogy of Kwajalein Atoll. The primary objective of the ~En€wetak and Bikini atolls, a few hundred miles away.
study was to determine ground-water availability. Kwajaleln_ is now part (?f the U.S. Pacific Missile Test
Details of these studies are given by Hunt (1996) and Range. Since the 1980's, th_e U.S. Army has leased most
Gingerich (1996) for Kwajalein and Roi-Namur Islands of the atoll from the Republic of the Marshall Islands.
respectively. A chemical characterization of aquifer

water was carried out at Kwajalein Island because of thgsrevious Investigations

demand on ground-water resources and the possibility

of industrial contamination. The geology and hydrology of Kwajalein Island
were described by Hunt and Peterson (1980) and Peter-
son and Hunt (1981). Their work included an interpre-
tation of drilling records, evaluation of salinity profiles

The purpose of this report is to describe the chemf’md aquifer tidal dynamics, various aquifer tests, and

ical characteristics of ground water at Kwajalein Island. onstruction of a hydrologic budget. Their results
This characterization includes the overall chemical included a delineation of the lens of fresh ground water

composition of aquifer water, the extent of non-conserunder the island and an estimate of sustainable yield.

vative chemical reactions in the aquifer, and factors thajndustrlal contamination of soil and ground water by
influence the fate of organic contaminants, although thdU€! nydrocarbons, solvents, and metals has been

breakdown of specific contaminants is not addressed. A€Scribed by the U.S. Army Environmental Hygiene
total of 116 ground-water samples were collected from/\gency (.1990' 1991). T_helr studies d_efln_ed the typ_e
the aquifer and shallow unsaturated zone during two and location of contaminants on Kwajalein and Roi-

periods in 1991. Because ground water on the islands iyamur IsIands. Although most of these cqntamlnated
derived from rainwater and seawater, eight rain and SI€S are notin areas where ground water is pumped for

eight seawater samples also were collected. public water supply, the possibility of contaminant
migration to these areas requires that the contaminant

hydrology and chemistry be considered in an assess-
Setting ment of ground-water availability.

Purpose and Scope

Kwajalein atoll, located in the western Pacific
Ocean at latitude°horth and longitude 168#ast, is DESCRIPTION OF THE STUDY AREA
part of the Marshall Islands (fig. 1). Kwajalein is the
world's largest atoll in terms of enclosed lagoon area.

: : . . Geology
The climate is tropical, with an average annual temper-
ature of 30.3C and average annual humidity of about

80 percent at Kwajalein Island. Average annual ralnfallOCean floor and enclose a shallow (less than 300 ft)

during 1945-92 was 102 'n".W'th most rain falling in lagoon. The base of the atoll is a basaltic volcano that
May through_l\!oven_wber (National Oceanic and Atmo- has subsided. Drilling at Enewetak Atoll reached basalt
spheric Administration, 1992). Sea-le_vel data are alsoat 4,500 ft below mean sea level (Emery and others,
recoro_led by Fh_e US National Oceanic and_Atmo- 1954), and the basaltic core of Kwajalein is probably at
_sphgrlc Adm!nlstranon. The average elevation of Kwa-a similar depth. The volcanoes that formed the Marshall
Jalein Island is 6 1t above mean sea level. Islands were active more than 150 million years ago

Atolls are geologic structures that rise from the

Description of the Study Area 3



(Schlanger and others, 1987). Reef growth during subdynamics, and hydraulic properties of the carbonate
sidence of the volcanoes results in a cap of calcium camquifer.
bonate minerals that spans the distance from the top of

The freshwater part of the aquifer at Kwajalein
the now-submerged volcano to the sea surface.

Island is formed almost entirely of unconsolidated sand
The shallow subsurface geology of atolls is deter-and gravel, with some coral and a few cemented layers
mined by precipitation and deposition of carbonate min-of sandstone and conglomerate (Hunt, Spengler, and
erals, the chemical alteration (diagenesis) of these  Gingerich, 1995). The freshwater part of the aquifer,
minerals, and changes in sea level. During the most defined by the secondary drinking-water standard
recentice age (about 18,000 years ago), sea level was @i.S.Environmental Protection Agency, 1996) of 250
least 300 ft below its current height (Kennett, 1982) andmg/L or less of dissolved Clfollows the elongate
atolls such as Kwajalein were emergent structures sulshape of the island (Hunt, 1996). The maximum eleva-
ject to enhanced physical and chemical erosion by  tion of the water table is 1.6 ft above mean sea level.
waves and rain. CaCQrom reefs originally is precipi- The thickest part of lens (37 ft) is located about midway
tated principally as the minerals aragonite and magnealong the length of the runway and somewhat closer to
sian calcite. But aragonite and magnesian calcite are the lagoonal side of the island (fig. 2). The lens is thick-
more soluble than pure calcite, and diagenetic reactionsst on the lagoon-side of the island; this is attributed to
transform aragonite and magnesian calcite to a calcitia greater abundance of fine-grained and less-permeable
limestone that is more consolidated and more perme-sediments from the lagoon. The freshwater-saltwater
able (Morse and Mackenzie, 1990). The rise in sea levetransition zone commonly is twice as thick as the fresh-
since the last ice age has allowed resumption of reef water lens it underlies, indicating high dispersivity from
growth at the top of the atoll and deposition of new car-tidal mixing.
bonate minerals on top of the material that was eroded
and recrystallized during the Pleistocene ice ages. The ,
result is a three-layer structure (from bottom to top) of: G&ochemistry
(1) dense, well-consolidated Pleistocene limestone; (2) _ ,
unconsolidated lagoonal sediments of mud, sand, and Hunt (1996) defined the aerial exten't of the fresh-
gravel: and (3) unconsolidated and well-sorted beach water lenses and recharge zones, the_ thlckness'of the
sand and gravel. The upper two layers are relatively frgshw_ater lens, and assessed potentla_tl cqntammant
young, unaltered, and have moderate permeabilities; th&lgration from known sources for Kwajalein Island.
lower limestone has a high permeability that formed The aqueous geoghemlstry of carbona_te aqwfers,_such
during the subaerial exposure and recrystallization to as that at Kwajalein, has been the subject of consider-

calcite (Hamlin and Anthony, 1987). Drilling on Kwa- able study. Initial studies noted the importance of car-
jalein Island indicated that there was a slight ocean-to?0" d|o?<|de N spmulatln_g the net d|ssolu'_uon of and
lagoon dip in these layers, and the depth to the uncon(_:ontrolllng the diagenesis of car_bonate ml_nerals_(PIum-
formity between the Pleistocene limestone and younganer' 1975). I_:urther _Work examined the d'SSOIUt'O.n .Of
sediments appeared to be about 80 ft below mean Seégarbonate minerals in the freshwater-seawater mixing

level (Hunt, Tribble, and Gray, 1995). At other atolls, zone using field studies (Plummer_ and others, 1976;
this unconformity is typically 20 to 70 ft deep (Under- Back and others, 1979; Buddemeier and Oberdorfer,

wood, 1990). 1986; Smart and others, _1988;_$tqessell and others,
1989) and thermodynamic equilibrium models (Plum-

mer, 1975; Sanford and Konikow, 1989a; Stoessell,

Hydrology 1992). Combined chemical and hydrologic studies have
been used to calculate rates of diagenesis and associated

Atoll aquifers are recharged by rain infiltrating  features such as porosity development and aragonite-to-

through a thin unsaturated zone. Recharge from rainfaltalcite mineral phase transformations (Budd, 1988;

typically forms a thin lens of freshwater that is buoy- Anthony and others, 1989; Sanford and Konikow,

antly supported by dense saline water from the ocean1989b; Vacher and others, 1990).

Mixing between the infiltrated rain and saltwater forms

f itional salinitv. The thick fthi Microbial activity in ground water has received
a zone oftransitional salinity. The thickness of this tran-, ygigeraple attention in many environments (Chapelle,
sition zone is determined by the rate of recharge, tidal

4 Ground-Water Geochemistry of Kwajalein Island, Republic of the Marshall Islands, 1991
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1993), principally because of the potential for microbial reduction, and methanogenesis yield progressively less
oxidation to degrade industrial contaminants. Althoughenergy per mole of C oxidized. Microbial communities
carbonate-mineral diagenesis is strongly affected by in an environment with an abundant supply of organic
microbial oxidation of organic matter, relatively little carbon initially will use oxic respiration until the supply
attention has been paid to determining the types and of dissolved oxygen is depleted, then will switch to
extent of microbial oxidation in carbonate aquifers, anddenitrification until NG is depleted. In addition to
the effect of microbial oxidation on mineral diagenesis. forming N, (eq. 3), some denitrifying bacteria can
Buddemeier and Oberdorfer (1986) noted low concenreduce NQ to NH,* (Korom, 1992). Sulfate reduction
trations of Q and the presence o£8 in water from (with the production of BS) follows denitrification,
wells on islands at Enewetak Atoll, and suggested thaand methanogenesis follows the depletion ofSGJn
microbial oxidation of organic matter was exerting an this report, dissolved chemical constituents are used to
effect on water chemistry. Oxidation of organic matterinfer the amount of carbonate-mineral dissolution and
in limestone sinkholes strongly affects the saturation organic-matter oxidation that have occurred in a given
state of the water with respect to carbonate minerals, irground-water sample.
addition to changing the overall water chemistry (Bot-
trell and others, 1991; Stoessell and others, 1993).

METHODS OF STUDY

Geochemical reactions in the Kwajalein aquifer
include the diagenesis of carbonate minerals and the The methods used to collect and analyze the data
microbial oxidation of organic matter. Carbonate-min- gescribed in this report are described below. This
eral diagenesis occurs by the following reaction: description includes well-construction and sampling
methods, field and laboratory techniques for the analy-
sis of water samples, and numerical methods for the
analysis of water chemistry data.

CaCQ + CO, + H,0 - 2 HCO; + C&+ (1)

It should be noted that M§and Sf* can substi-
tute for C&"in the carbonate minerals aragonite and
calcite, so evaluation of mineral diagenesis must con-pjonitor Wells
sider all three bivalent cations. The oxidation of organic
material can occur by use of several different oxidants  Three types of monitor wells (distinguished by
(known as "terminal electron acceptors”) such @s O  their prefix in fig. 2), were sampled as part of this
NOs and SQ?". These reactions are written as follows: geochemical investigation. Not all monitor wells on

Oxic respiration: CHO + O, - CO, + H,0 (2) Kwajalein Island were sampled for this geochemical

Denitrification:

study.
5CHO +4 NG +4 H -
5CO,+2N,+7H,0 (3)
Sulfate reduction: 2 CHO + SQ? -
2HCO; +HS +H"  (4)

2G0 - CO + CH, (5)

Methanogenesis:

where CHO represents organic matter. These

equations and their thermodynamic significance have
been discussed in detail; see, for example, Berner an
others (1970), Thorstenson and Mackenzie (1974),

Froelich and others (1979), Mackenzie and others
(1981), Jorgensen (1983), and Reeburgh (1983).
Organic-matter oxidation with £as the terminal

electron acceptor yields the greatest amount of energ
per mole of carbon oxidized. Denitrification, sulfate

Fifty-one K-series wells at 11 sites were sampled.
Each site (indicated by the number following K) typi-
cally had five to seven wells that extended to different
depths below the water table, although some sites had
only one or two wells. Each well had a short-screened
interval at the bottom. The numeric suffix of the well
gives the mid-screened interval depth of the well in feet
below mean sea level.

Thirteen of the K-series wells were remnants from

&n original network of 23 constructed in 1978 by Hunt

and Peterson (1980). These wells were installed by driv-
ing 3-in.-diameter steel casing into the ground using
percussion. The lower 1.5 ft of the casing was perfo-
rated. These wells are K3-3, K3-8, K3-13, K5-7, K5-12,
K5-17, K5-39, K6-10, K6-14, K6-20, K7-19, K7-29,

)énd K7-38.In 1990, the wells were cleaned of debris by

airlifting, and cement pads and risers added.

6 Ground-Water Geochemistry of Kwajalein Island, Republic of the Marshall Islands, 1991



The other 38 K-series wells were constructed by lysimeter was placed in the hole, a small amount (less
the USGS in 1990. Each well was constructed of 2-in.than 300 mL) of untreated ground water from the water
interior diameter flush-jointed schedule 40 PVC pipe. plant was added to pack the native material around the
The screen at the bottom of the wells was 2.5 ft long ancceramic filter, and remaining native material was used
had a nominal slot size of 0.02 in. Wells were drilled to fill the annulus between the lysimeter and auger hole.
using a truck-mounted 4.5-in. interior diameter hollow-A vacuum was applied to the lysimeter, sucking water
stem auger to about 2 ft beyond the target depth. Welfrom the unsaturated zone through the ceramic filter and
casing materials were assembled inside the auger, aninto a collection cup. Typical collection volumes, after
aluminum plate at the bottom of the auger was knocked24 to 48 hours, were 200 to 800 mL. Before sample col-
out, and the auger sections were retracted, leaving théection, the lysimeters were allowed to equilibrate for
well casing in the borehole. Water was added during 10 days, during which a total of about 4 L of water was
retraction to minimize the problem of loose sand flow-collected and discarded from each lysimeter.
ing up inside the auger. About 5 to 10 ft of silica sand
mixed with well cuttings was added around the well
screen. Grout cement was used to seal outside the wéTi€ld Methods
from the top of the sand pack to the surface. Wells were

finished at the surface with a cement pad and encloseld \évf"‘tei]r samplef] for ghelgcr;)emlcal fggiyssdvx\ljerle col-
in a protective steel riser. ected in January through February, and July

through August, 1991. In January through February,
Water from three shallow wells (K1-0, K5-0, and 1991, a total of 59 water samples were collected (50
K6-1) completed in the borehole of deeper wells, had \ye||, 5 seawater, 4 rain). In July through August, 1991,

anomalously high pH values (8.9 to 11.5) and probablyy total of 73 water samples were collected (58 well, 8
were affected by the cement used in construction. Datynsaturated zone, 3 seawater, 4 rain).

from these wells are not included in this report. _
Before sampling each well, a volume of water

The two CE- and eight W-series wells sampled  equivalent to at least three well volumes was removed
were constructed in 1990 to investigate ground-water ysing either a gasoline-powered centrifugal pump or a
contamination. One shallow (maximum depth 10 ft  manual bilge pump. Samples were collected using a 1-
below mean sea level) well was located at each site; | polyethylene bailer. Before sampling, the bailer was
they were slotted along their entire length and across thgjsed thoroughly with well water pumped during purg-
water table. The CE wells were constructed by the U-Sing. The bailer was discarded at the end of each sam-
Army Corps of Engineers and the W-series wells wergyjing day; 6 to 10 wells were sampled in a typical day.
constructed by the USGS for the U.S. Army Environ-

mental Hygiene Agency. At the site, water was transferred from the bailer to

_ S _ _aclosed cell using gas-impermeable tubing to minimize

Several sites were identified as having contami- atmospheric contact during the measurement of pH, dis-
nated ground water (U.S. Army Environmental solved oxygen, and temperature. The pH electrode was
Hygiene Agency, 1991). In particular, ground water  cajiprated against National Bureau of Standards stan-
near the power plant and fuel storage tanks was founggrds £0.01 units). Temperature@.1°C) was mea-
to be contaminated by petroleum hydrocarbons. Wellssyred using a thermistor. Samples faSHtotal sulfide)
at these sites were sampled to investigate the effect ofjetermination were collected, without filtration, into
this contamination on system geochemistry and evalugg-mL glass bottles and immediately fixed with Znso
ate the degradation of hydrocarbons. Reference in thigng NaOH. Dissolved QOwas determined either by
report to contaminated sites at Kwajalein Island refersyyinkler titration or through the use of a polarographic
only to petroleum hydrocarbon contamination. Wells atg|ectrode £0.2 ppm and 0.1 ppm, respectively, detec-
these sites are K12-13, K15-3, K15-12, W17-2, W17-3.tion [imit). Water for other analyses was collected into
W17-4, CE-1, and CE-3. a 4-L disposable container and filtered in a field labora-

In July 1991, four porous ceramic-cup lysimeters tory.
were installed 2 ft and 3 ft below ground surface at the Samples of water from the unsaturated zone for
K1 and K3 well arrays to sample water from the unsatmajor-ion and nutrient analysis were collected twice
urated zone. A hole was dug using a hand auger. Thefrom each of the four lysimeters in August 1991. pH

Methods of Study 7



measurements of the collected water are almost cer- titration alkalinity was stored in 60-mL high-density
tainly too high, because collection under vacuum polyethylene bottles and kept chilled; the titration alka-
removes dissolved acids such asf®m solution. To  linity samples were filtered to remove small particles of
evaluate this, a pH electrode was installed in a hole dugcaCG; that would effect the outcome of the alkalinity
3-ft deep at well array K1. Readings were made titration. Filtered water for determination of major ions
throughout the sampling period and compared with calwas stored in 125-mL high-density, HN@ashed
ibrations performed before and after the installation. polyethylene bottles, acidified to pH 2 with high-purity
Collection under vacuum also prevented accurate me&NOs, and kept chilled. Filtered water for determina-
surement of dissolved£and H,S concentrations in the tion of nutrients was stored in HCI-washed 125-mL
unsaturated-zone water samples. It is possible that loslsigh-density polyethylene bottles. In general, field

of CO, under vacuum stimulated some Ca@@ecipi- methods follow procedures described by Tribble and
tation, thus altering the major-ion chemistry. This effect others (1991) and Smith and others (1991) to handle
cannot be evaluated with the present data. high-salinity samples.

Rain samples were collected by spreadib by 9
ft plastic sheet over the ground in an open area and Col:aboratory Methods
lecting the accumulated rain water. The first rain sample

of the January through February, 1991 trip was runoff  Major-ion and nutrient analyses were done at the
collected from a metal roof during a heavy. Squa”. SeaUniversity of Hawaii Department of Oceanography.
water samples were collected from 6 to 12in. below theThjs |aboratory participates in the USGS standard-ref-
surface of the lagoon and the open ocean. erence water-sample program, and has been approved

Samples were filtered 1 to 3 hours after collection. by the Branch of Quality Assurance. €aMg?*, Si*,
Samples were not filtered at the well head because ofand N& were determined by inductively coupled
potential contamination introduced by wind and fre-  Plasma/optical emission spectroscopy.was deter-
quent squalls, and availability of a nearby field labora-mined by atomic absorption spectroscopy.v@is
tory. Water was passed through a 42-mm diameter ~ determined by titration with AGN§ SO,?” was deter-
Watman GF/F filter (nominal pore size ) under ~ mined either by ion chromatography or gravimetrically
vacuum filtration. Comparison of samples filtered usingas @ BaS@precipitate, depending on the sample con-
GF/C filters (nominal pore sizejim) and ultrafiltration ~ centration. TA was determined by multipoint titration
(nominal pore size 3 nm) found ultrafiltered samples With HCI. H,S was determined by Kl titration. B

were not different in titration alkalinity (TA), N9 NOs + NO,", NH,*, and Si(OH) were determined cal-
+NO,", and Si(OH), 1 percent lower in Njf, and 3 orimetrically on an autoanalyzer. DOP was calculated
percent lower in PEY"; however, ultrafiltration did as the difference between Pand total P following

remove 30 to 70 percent of the organic carbon, nitrogen!Jltl’ﬁViOlet oxidation. DON was calculated as the differ-
and phosphorus (C, N, and P) that was attributed to ba&nce between inorganic and total N following ultravio-
teria smaller than im (Hollibaugh and others, 1991). let oxidation. DOC was determined by infrared

This comparison indicates that the GF/F filters used irabsorption following ultraviolet oxidation.

this study removed essentially the entire inorganic non-  The analytical accuracy (agreement between the
dissolved fraction from a water sample, but that bactemeasured concentration and the calculated or most
rial biomass may be a component of what is reported agropable concentration) of a determination was esti-
dissolved organic carbon (DOC), dissolved organic  mated by comparison with laboratory standards. Stan-
nitrogen (DON), and dissolved organic phosphorus  gards included USGS standard reference samples and
(DOP). solutions prepared in the University of Hawaii labora-
Before collecting filtered water, the filter appara- tory. Analytical precision (reproducibility of a mea-
tus was rinsed with distilled water followed by two 200- sured value) was determined by submission of blind
mL aliquots of sample water. If samples had an odor ofduplicate samples to the laboratory. Values for the pre-
organic contaminants, the filter apparatus was washedision, accuracy, and detection limit of each analysis are
with phosphate-free soap and distilled water after the given in table 1.
sample was filtered. Filtered water for determination of

8 Ground-Water Geochemistry of Kwajalein Island, Republic of the Marshall Islands, 1991



Table 1. Analytical precision, accuracy, and detection limits for selected chemical constituents in ground water, Kwajalein
Island, 1991

[mg/L, milligrams per liter; meg/L, milliequivalents per liter; nd, not determiped;, micrograms per liter]

Precision ! Accuracy 3 _

) average average Detection )
Constituent (percent) n 2 (percent) n4 limit Units
Calcium (C&h 0.4 17 2.1 15 0.002 mg/L
Magnesium (M§") 0.4 17 0.2 15 0.002 mg/L
Barium (Ba) 7.9 8 -0.5 4 0.002 mg/L
Strontium (S?*) 0.1 17 1.4 16 0.002 mg/L
Sodium (N&) 0.4 17 21 13 0.1 mg/L
Sulfate (SQ%) 14 16 25 3 0.1 mg/L
Potassium (K) 0.2 14 0.4 6 0.01 mg/L
Chloride (CI) 0.2 14 -1.0 6 0.2 mg/L
Boron (B) 1.8 3 20 5 0.05 mg/L
Hydrogen sulfide (KS) 3.6 6 nd nd 0.1 mg/L
Titration alkalinity (TA) 0.6 8 0.5 12 0.04 meg/L
Phosphate (P§) 1.6 19 3 >50 0.3 Hg/L
Nitrate (NGy) 16.0 19 3 >50 0.3 Mo/l
Ammonia (NH,*) 3.7 19 3 >50 0.3 pg/L
Silica (Si(OHY) 0.3 19 3 >50 0.006 mg/L
Dissolved organic phosphorus (DOP) 0.6 8 5 >50 0.3 pg/L
Dissolved organic nitrogen (DON) 2.0 8 5 >50 0.3 pg/L
Dissolved organic carbon (DOC) 1.2 8 5 >50 0.3 mg/L

1 Calculated as the average agreement, in percent, between blind duplicate samples

2 Number of paired samples

3 Calculated as the average agreement, in percent, between the measured value and a primary standard
4 Number of analyses

Geochemical Numerical Modeling analytical determinations (Hem, 1989). In practice, a
charge balance of less thah percent is considered
Calculation of charge balance, saturation state withgood, and a balance in excessb® percent is
respect to carbonate minerals, and total dissolved inokonsidered suspect. Selected constituents from 11
ganic carbon (DIC) were done using the computer prosamples with charge balances in excess of 10 percent
gram WATEQA4F (Ball and Nordstrom, 1991). The  were reanalyzed.
charge balance was used as an overall check of analyti-

cal accuracy for the major ionic constituents, and calcu- The saturation state of a water sample is used to
lated as: y J ’ predict if a specific mineral is thermodynamically

favored to dissolve or precipitate. For water samples
0 (XCat—2An) () from Kwajalein Island, the saturation state with respect
(ZCat+ XAn)/2’ to the carbonate mineral aragonite was calculated
because it is an abundant mineral in the reefs that build
where>Cat and>An are the measured total number of atolls and its solubility constant is better defined than
equivalents of cations and anions respectively. A that of the magnesian-calcite solid solution series. The
negative charge balance indicates that one or more ofdegree of saturation is expressed as a saturation index
the cations was underdetermined, one or more of the (SI):
anions was overdetermined, or both. Conversely, a
" o _ IAP
positive charge balance indicates that one or more of the Sl= log, —, @)
. . . 10K
cations was overdetermined, one or more of the anions sp
was underdetermined, or both. A charge balance of zero
indicates equivalence between the number of cations wherel AP is the ion activity product of the appropriate
and anions, as demanded by the law of electrical ions and(spis the solubility constant for the mineral in
neutrality, and strongly indicates accuracy in the

Percent charge balance 10
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guestion (Drever, 1988; Krauskopf, 1979). A saturation2.

index of zero occurs when the solution is at equilibrium
with the mineral. A positive saturation index indicates
thermodynamic oversaturation and a tendency for the
mineral to precipitate. A negative saturation index
indicates undersaturation and a tendency for the mineraj

to dissolve. Analytical and thermodynamic uncertainty

suggest that a range of aba@t3 be ascribed to the
calculated value of saturation index for a particular
sample.

Both carbonate-mineral dissolution and the oxida-
tion of organic matter release dissolved inorganic car-
bon to aquifer waters. Consequently, changes in DIC
can be used to calculate the extent (or amount) that
these reactions have occurred. The specific steps taken
in these calculations are discussed below and illustrated
with an example.

Values of DIC were calculated by WATEQ4F
using input values for pH, TA, and the concentration of
anions of weak acids (Dickson, 1981). DIC includes
ionic species (HC@ and CQ?), dissolved C@, and
carbonic acid (HCOg3), and is a measure of the total
inventory of dissolved inorganic carbon independent of

acid-base reactions. The approach was to ascribe 4.

changes in DIC to (1) conservative mixing between
rainwater and saltwater, (2) dissolution or precipitation
of carbonate minerals, and (3) the oxidation of organic
matter. Conservative mixing describes the mixing
between two or more water masses with no net
geochemical reaction. When two waters mix conserva-
tively, the concentration of a dissolved constituent is a
weighted average of the concentration in the contribut-
ing waters. Geochemical reactions either add or remove

dissolved constituents and cause concentrations differ-

ent from that predicted by conservative mixing.

Mixing ratios and deviations from conservative
mixing between rainwater and seawater were calculated
using CI as a conservative element. The goal of these
calculations was to explain the chemical composition of
Kwajalein Island ground water in terms of rain-seawa-
ter mixing and the geochemical reactions that cause
constituent concentrations to deviate from conservative
mixing. The following steps were taken in the evalua-
tion of the water chemistry data:

1. Laboratory results for ionic concentrations were
converted to millimoles per liter (mM) as a
common unit.

Concentration data were combined with field
measurements of pH and temperature, and
analyzed with WATEQA4F to calculate charge
balance, DIC, and saturation state with respect to
aragonite.

Seawater and rain samples were used to define
end-members for the composition of aquifer
waters. The end-member concentrations used for
the calculations were the average of four rain and
five seawater samples collected in January
through February, 1991 and four rain and three
seawater samples collected in July through
August, 1991; thus, each end-member was
defined as the average concentration of eight
samples. The composition of each aquifer water
sample, as a percentage of the two end-members,
was based on the chloride concentration of the
sample. Clwas chosen as the index of
conservative mixing because of its high analytical
precision, the absence of oxidation-reduction
reactions involving chloride under normal
geochemical conditions, and the soluble nature of
chloride-based salts (Hem, 1989).

For each aquifer water sample, the concentration
of selected constituents based on conservative
mixing was predicted using the calculated
proportion of each end-member and the
concentration of the constituents in the end-
members. The difference between the predicted
and measured concentration is a result of one or
more chemical reactions that either consumed or
released the constituent in question.

A mass balance was done for selected non-
conservative constituents to evaluate how much
each water sample had been affected by a
particular reaction. Attributing changes in the
chemistry of a particular sample to organic and
inorganic reactions was done in the following
manner:

i. The total extent of the reactions shown in
equations 1 through 5 is determined by the
amount of excess DIC, because C is common
to all reactions.

ii. The extent of carbonate mineral dissolution
(Ccarbin equation 5) is determined by the sum

of non-conservative excess inCa Mg?* +
SP,

10 Ground-Water Geochemistry of Kwajalein Island, Republic of the Marshall Islands, 1991
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Figure 3. Calculation of excess dissolved inorganic carbon (DIC), amount of carbonate mineral
dissolution (Cc¢ar), and amount of organic carbon oxidation (Cog), Kwajalein Island, 1991.

iii. By mass balance, excess C contributed by  guish between the different types of organic oxidation
organic-matter oxidation (=&g) is taken to (equations 2 through 5).
be excess DIC — &, and Gy is taken as
the sum of equations 1 through 4. It is not
possible to use the dissolved nutrient
concentrations and the C:N:P ratio of organic
matter to determine &4 because reactions
such as nitrate reduction, ammonia oxidation
and sorption of phosphate to carbonate
minerals alter the concentration of N and P
released during the oxidation of organic C
(Fenchel and Blackburn, 1979; Krom and

Two examples of the procedure are shown graphi-
cally in figure 3. The DIC and G&concentrations of
these hypothetical examples are plotted agairist Cl
which is shown as a percentage of seawater. Dashed
lines represent the conservative mixing lines for both

'DIC and C&". Sample A is 60 percent seawater and 40
percent rainwater. The DIC and €axoncentrations for
a conservative mixture would be 1.34 mM and 6.24
mM, respectively. The respective concentrations in
Berner, 1980; Froelich and others, 1982; sample Aare 5.34 mM and 1%‘.24 mM, so the excess
Korom, 1992). DIC is 4 mM and the excess €Cas als_o_4 mM. Using
’ the excess GA as a measure of Gy, it is concluded
Similar mass-balance calculations have been use¢hat because £,,= excess DIC, this sample is from an
to infer the net extent of geochemical reactions in sevenvironment that has undergone a net dissolution of 4
eral other studies (Mackenzie and others, 1981; Plummmol of calcium carbonate minerals per liter of solu-
mer and others, 1990; Tribble and others, 1991). The tion and also that there has been no oxidation of organic
approach used in this report assumes that mixing andmatter (Grg=0).
reactions occur in a closed system, and cannot account Sample B is 30 percent seawater and 70 percent

for the IO.SS of ga;es such as_p‘mm the unsaturated rainwater. The DIC and G&concentrations for a con-
zone. This analysis only considers the total, or net, reac-

tions. Also, the analysis does not quantitatively distin-servmlve mixture would be 0.77 mM and 3.12 mM,
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respectively. The respective concentrations in sample Bow as 6.9. The average pH of all ground-water samples
are 4.77 mM and 5.12, so the excess DIC is 4mM andwas 7.5. The ground-water pH values are in marked
the excess CGdis 2 mM. Therefore, this sample is from contrast to those measured in seawater (typically 8.2).
an environment that has undergone a net dissolution opH values for rain samples ranged from 6.9 to 8.6, but
2 mmol of calcium carbonate minerals (on the basis thabecause of the low ionic strength of rain, these pH read-
the excess G = Cc,p) per liter of solution and also  ings are unstable and values must be considered impre-
where there has been an equivalent amount of organicise.

matter oxidation (grg= excess DIC — gy = 2). The pH of unsaturated-zone water samples

requires special consideration. Because water samples

GEOCHEMISTRY OF GROUND WATER from the unsaturated zone were collected under vac-
uum, the measured pH values of the collected water are

This report is based on a large number of field angnot reliable. The pH electrode installed in a hole dug 3

laboratory measurements. To facilitate reading, most oft d€€p at K1 on August 2, 1991, was left for 6 days.
this data is presented graphically in the form of cross-Réadings were made daily between August 3 to August
section profiles and scatter plots. 8 (except August 7) and compared with calibrations

performed before (August 1) and after (August 22) the

installation. Both calibrations were within 0.03 pH
Chemical Overview units, indicating relatively little electrode drift consider-

ing the time between calibrations and the conditions of

Field measurements during January through Feb-use. pH values were calculated from the initial calibra-

ruary, 1991 and July through August, 1991 of temperation because the field measurements were performed
ture, pH, dissolved § and dissolved k6 at selected  closer to that date. The average pH of unsaturated zone
wells on Kwajalein Island are shown in table 2 (in back water in contact with the buried electrode was 7.34; this
of report). Ground-water temperatures typically were value is considered to be the most reliable measure of
warm and exhibited only a narrow range in temperaturepH for all unsaturated zone water samples and is used in
(about 27 to 31C). The warm temperatures result from the calculation of dissolved inorganic carbon and arago-
the warmth of seawater (about’29average) and rain- nite saturation state.
water (about 28C average) in addition to solar warm-

Lnogngf gir\(:?(;j;N;t;rla-rthgogsﬁggﬁgr);r:g&i:r;]e of the ground-water samples had dissolvga@ncen-
u y trations less than 1 mg/L. Low concentrations of dis-

because lag effects associated with changing tempera: o G are common in ground water (White and

]E;\r/isrsa[]? ?]brsaeigg ;—P ri;’g‘:gg;? r?]f;{]a%gIrizlr;n((jcv;l]zteéﬁjlsgthers, 1990). Dissolvedfaoncentrations were lower
9 pelie, than concentrations in seawater and rain, which were

1993). typically 4 to 8 mg/L and near saturation with respect to
Measurements of ground-water temperatures mayhe atmosphere. Measured DO concentrations in waters
be compromised by possible heating during sample cokrom wells along sections A-A’ and B-B’ are shown in
lection and measurement as well as diurnal changes ifigure 4. At a given site, dissolved,@oncentrations
air and water temperature. Temperature profiles indi- tended to reach a minimum at mid-depth in the profile.
cate that water from sites in or near paved areas, for This pattern probably results from the consumption of
example K2 and K6, tended to be slightly warmer thandissolved @ by bacteria as oxic rainwater and seawater
water from unpaved areas such as K1 and K11. Profilesnix in the aquifer.
of temperature at individual sites do not follow a consis-
tent pattern with depth. A clear understanding of the
patterns of temperature variation requires downhole
measurements that were not done during this study.

Dissolved G concentrations were low; 73 percent

Concentrations of dissolved,H in ground water
were variable, and ranged from 0 to 23 mg/L. Dissolved
H,S was not detected in any of the rain or seawater sam-
ples. Measured 56 concentrations in water from wells
The pH of most of the ground-water samples wasalong the two sections are shown in figure 5. At a given
between 7.2 and 7.7. Some samples, particularly fromsite, H,S concentrations tended to have an inverse rela-
sites contaminated by hydrocarbons, had pH values agion with dissolved Q concentrations and reach a max-

12 Ground-Water Geochemistry of Kwajalein Island, Republic of the Marshall Islands, 1991
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Figure 4. Oxygen concentrations in ground water, Kwajalein Island, 1991.
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Figure 5. Sulfide concentrations in ground water, Kwajalein Island, 1991.
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imum at mid-depth in the profile. This is probably a ary and July through August, 1991. The median per-
result of continuing microbial oxidation of organic mat- centage of difference in major-ion concentration in
ter following the depletion of dissolvedONater from  samples from the same well between the two periods
sites contaminated by hydrocarbons had the highest ranged from 1 to 11 percent, depending on the constitu-
measured levels of dissolved$! This suggests that  ent. In general, the largest differences within a well
the hydrocarbons are being degraded by microbial subetween the two periods were in the ions KT, and
fate reduction (such as equation 4) within the aquifer. Na* (median differences of 9 to 11 percent). Bivalent
cations were less variable (median differences of 2to 4
) percent). SQZ' values for water samples from the same
Major lons well during the two periods were within 7 percent. TA
values were relatively constant; the median agreement
between samples for the two periods was 1 percent. A
plot of CI concentration from individual wells during
the two sampling periods shows the relatively constant
values (fig. 7).

The major-ion composition of water from the
Kwajalein Island monitoring wells, and from rain and
seawater collected during January through February
and July through August, 1991 is given in table 2 (in
back of report). Concentrations of @l water from
wells in the two cross sections collected during January A total of eight rain and eight seawater samples
through February and July through August, 1991 are Were collected as end-members to evaluate mixing and
shown in figure 6. Concentrations of @ ground non-conservative reactions within the aquifer. For cal-
water ranged from low (less than 10 mg/L) to nearly culations, the composition of_each end-member was
that of seawater (19,350 mg/L). In particular, ground- taken as the average of the eight samples to incorporate
water samples from deeper wells and sites located ~ Natural variation in rain and seawater composition.
closer to the ocean tended to have higtt@icentra- ~ Variation of Cl'in the composition of rain is large, rang-
tions as a result of increased mixing with seawater. Thdng from 1.4 to 59 mg/L. This is a result of differing
depth profiles of Clshow a broad transition zone, amounts of marine aerosols dissolved in the rain, and is
where shallow, fresh ground water from rain mixes with @ complex function of wind speed, atmospheric resi-
deep saline ground water from the ocean. This is consiglence time of moisture and salt, and intensity of rain.
tent with studies on other atolls (Buddemeier and Hol-Variation in the composition of surface seawater is
laday, 1977; Wheatcraft and Buddemeier, 1981; small. The difference in Ctoncentrations between the
Hamlin and Anthony, 1987; Oberdorfer and others, Most saline and dilute seawater samples was only 200
1990; and Underwood and others, 1992) and earlier Mg/L, or about 1 percent of the total @oncentration.
studies at Kwajalein (Hunt and Peterson, 1980), wherel is range of variation is within what can be expected
the freshest water is found near the top of the lens ané surface seawater from seasonal differences in rainfall
shows increasing concentrations of dissolved ions with&nd evaporation, and local variation from rainfall and
depth. A secondary drinking water standard of 250 ~ €vaporation across the reef flat and in the lagoon.
mg/L of dissolved CI(U.S. Environmental Protection Variations in Cl compared with seven other con-
Agency, 1996) limits the amount of water that can be stituents are shown in figure 8. The straight solid line in
pumped for drinking supply. At Kwajalein Island, water each scatter plot represents a conservative mix of rain
with CI" concentrations less than 250 mg/L is found atand seawater. Deviations from this line are a result of
depths of less than 35 ft below mean sea level. For thehemical reactions such as carbonate-mineral dissolu-
entire island, the thickness of the potable part of the tion and organic-matter oxidation. The straight-line
aquifer is usually much less. Many parts of the island, behavior of N&, K*, and SQ% with CI" indicates that
particularly near the lagoon and ocean shorelines, do mixing processes involving these ions are relatively
not overlie a potable ground-water resource. Further conservative, indicating that they are not substantially
information on the size and dynamics of the freshwaternvolved in geochemical reactions (fig. 8A—C). Small
part of the aquifer is provided by Hunt (1996). positive deviations of Kand SQ? from conservative

Temporal variation between sampling periods ~ Mixing are seen at lower Qoncentrations. This may
tends to be less than the spatial differences among e a result of either local application of fertilizers or
wells. Temporal trends were evaluated using the 48 from marine aerosols (Andreae and others, 1986). Devi-

wells that were sampled during January through Febriations of C4*, Mg?*, and SF*from the rain-saltwater
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Figure 6. Chloride concentrations in ground water, Kwajalein Island, 1991.

Ground-Water Geochemistry of Kwajalein Island, Republic of the Marshall Islands, 1991



FEET

20 — —

-20 —

.40 —

-60 —

-80 — -
0 400 FEET

S ——
0 100 METERS

-100

Vertical scale greatly exaggerated

EXPLANATION

—250— LINE OF EQUAL CHLORIDE CONCENTRATION
IN MILLIGRAMS PER LITER, JUNE, 1991
Interval is variable. Dashed where approximate

FEET

20 — ! —

Sea level —L—"“ Y
467 \
\
228
AN

20 — ~

-40 —

-60 —

-80 —
0 400 FEET

S ——
0 100 METERS

-100

Vertical scale greatly exaggerated

Figure 6. Chloride concentrations in ground water, Kwajalein Island, 1991--Continued.
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Figure 7. Chloride concentrations in ground water for January through February, 1991, compared with

that for July through August, 1991, Kwajalein Island.
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relation indicate distinct non-conservative behavior  function of salinity shows that less-saline samples have
(fig. 8D—F). Titration alkalinity also shows distinct non- a higher N/P ratio than more-saline samples (fig. 12).
conservative behavior relative to'dhargely indicating  Ground-water samples with a’@bncentration less

the dissolution of carbonate minerals (fig. 8G). The disthan 250 mg/L had an average N/P of 59 (n=65)
tribution of TA in two sections is shown in figure 9.  whereas ground-water samples with addincentration
Values of TA are high in the shallowest wells, suggestgreater than 15,000 mg/L had an average N/P of 6
ing that most carbonate mineral dissolution is occurring(n=16). These data are consistent with the loss of dis-
in the upper part of the aquifer. The highest values of solved inorganic N to denitrification as fresh ground
TA are seen near areas that are contaminated by hydresater mixes with saline ground water and is affected by
carbons, indicating that the most intensive geochemicamicrobial oxidation of organic matter.

activity is occurring at these sites.

Charge Balance and Carbonate System
Nutrients
The calculated concentration of total dissolved

Concentrations of nutrients in water from Kwaja- inorganic carbon, the saturation index with respect to
lein Island collected during January through February aragonite, and the overall charge balance of each
and July through August, 1991 are given in table 2 (inground-water sample are given in table 3. The calcu-
back of report) and are shown in figure 10. Nearly all lated charge balance for all waters is shown in figure 13
ground-water samples had elevated levels QF’F,’O as both a function of salinity and as a histogram. The
NO5 + NO,", NH,*, Si(OH), DON, and DOC relative  charge balances show a normal distribution about a
to seawater and rain. Dissolved organic phosphorus mean of 0.7 percent and a standard deviation of 2.7 per-
concentrations were variable (fig. 10E). The elevated cent. These data indicate that the analytical techniques
levels of N, P, and Si(Oig)are consistent with the used in determining the concentration of the major dis-
microbial oxidation of organic matter and the concomi-solved ions yielded accurate results. In the more saline
tant release of organic and inorganic nutrients. The higlwater samples, however, either one or more of the major
levels of NGy + NO,™ at some of the sites (especially cations was slightly underdetermined or one or more of
K5, K3, and K1) may result from the application of fer- the major anions was slightly overdetermined (fig. 13).

tilizers to the grassy areas near these sites. Dissolved The calculated concentration of DIC for nearly all

S!(OH)“ IS con_su_jered_a nutrlgnt pecause the_absence cHround-water samples is considerably higher than that
Si(OH),-containing minerals indicates that dissolved of either seawater or rain. Whereas rain samples typi-

Si(OH), is principally controlled by biologic, rather oy hag DIC concentrations of less than 0.4 mM and
than geologic, reactions. Concentrations of dissolved .j-antrations of seawater were 2.0 to 2.2 mM. concen-
organic carbon in most samples (fig. 10G) tend t0 be y44i0nsin ground water were 1.3 to 14.5 mM. The aver-
only slightly ele\_/ateql over ram-seawa_ter mix, .bUt age DIC concentration of all ground-water samples was
tended to be quite high at the contaminated sites. 531,01 and only four samples had DIC concentrations
Secondary processes, such as the binding q?PO lower than seawater. These high values of DIC result
to carbonate minerals and the loss of fixed N to denitrifrom inorganic diagenesis of carbonate minerals and
fication, preclude using the concentrations of the microbial oxidation of organic carbon.
released nutrients as a measure of organic-matter oxida-

“0'?- : nutne_nt C(I)ncentrfaél_onslweée_z determlnl\clad_tg theslightly oversaturated with respect to aragonite. The sat-
stoichiometric release of dissolved inorganic N (N uration index of ground-water samples ranged from

NO, + NH,") and PQ™ following the oxidation of ¢ 61t 0,39, with an average of 0.14 (fig. 14). Rain
organic matter, there would be a correlation between samples were highly undersaturated with respect to ara-

con(ielntLatlonsr(‘)f d'ﬁ.so.lve? In(?rganlchN andy OTt:g-I gonite, having an average saturation index of -2.3. Sam-
ure 11 shows that this Is clearly not the case. The OWples from the unsaturated zone were slightly

levels of N_Q' +NO;'in Lnostzwater S/am'%'l?s with ECI di oversaturated. Although this may be partly an artifact
concentration greater than 250 mg/L indicates that disgogting from the difficulty in measuring pH values, the

solved N is being lost to denitrification (fig. 10B). A data indicate that most of the equilibration between
plot of the ratio of dissolved inorganic N to ?Oas a

Most ground-water samples were at saturation or
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Figure 12. Nitrogen to phosphorus ratio compared with chloride concentration in ground water,
Kwajalein Island, 1991.

ground water and the carbonate matrix of the island has reacted in the aquifer. An excess of DIC results
occurs close to the land surface and, presumably, occufsom the oxidation of organic carbon ¢f) and the net
quickly. Seawater samples were slightly oversaturatediissolution of carbonate minerals{g;). The average

and had an average saturationindex of 0.61, as is typicat|- and DIC concentrations of rain (Gi 0.5 mM, DIC

of tropical surface seawater (Plummer, 1975). =0.2 mM) and seawater (Gt 545 mM, DIC = 2.1 mM)
define a conservative mixing line. Deviations from this
curve for bivalent cations and DIC are then determined
as the difference between the measured constituent con-
centration and that predicted from conservative mixing

several constituents. Among the major ions, large ~ Using Cl concentrations (table 4). All concentrations
excesses of bivalent cations @aMg?*, and S£: fig. have been converted to a molar basis. The negative
8D-F) and TA (fig. 8G) result from the net dissolution Value calculated for & (Corg = excess DIC — &

of carbonate minerals within the aquifer. The high conin some of the deeper samples suggests that either val-
centrations of dissolved inorganic N, and ues for excess DIC are too low or that values fegfg
Si(OH),, the depletion of @ and the presence ob8  aretoo high for these samples. Concentrations of excess
suggest that the oxidation of organic matter also is pePIC, Ccay, and Ggin hydrologic sections are shown
vasive in the aquifer. Chemical deviations from conserin figures 15 to 17. Note that for each samplg,&is
vative mixing are a result of organic and inorganic  nearly equal to g,4(fig. 18), suggesting a link between
reactions. carbonate-mineral dissolution and organic-matter oxi-

Mass-balance calculations can be used to deter- dation. The stoichiometry of these processes is dis-
mine the amount of organic and inorganic material thatcussed later.

Organic and Inorganic Reactions

Deviations from conservative mixing are seen in

28 Ground-Water Geochemistry of Kwajalein Island, Republic of the Marshall Islands, 1991



Table 3. Charge balance, dissolved inorganic carbon, and saturation index in water samples, Kwajalein Island

[--, no sample collected]

January through Februa ry 1991

July through August 1991

Dissolved Dissolved
inorganic Saturation ino rganic Saturation
carbon ind ex with Charge carbon ind ex with
Charge balance  (in millimoles respect to balance (in millimoles respect to
Sample (percent) per liter) aragonite (percent) per liter) aragonite
K1-13 47 3.% 0.3 48 4.36 0.18
K1-14 25 4.44 0.30 38 4.53 0.21
K1-23 2.5 6.46 0.21 4.7 5.81 0.15
K1-33 1.0 7.78 0.12 0.7 6.93 0.08
K1-48 -1.2 8.42 0.10 -1.6 8.00 0.06
K1-72 0.7 3.22 0.07 -0.7 3.32 0.09
- -- - 2.8 1.31 0.12
K2-17 4.6 1.75 0.20 4.7 1.72 0.08
K2-26 -0.2 3.29 0.12 1.1 2.99 0.03
K2-35 1.3 8.22 0.11 -2.4 8.42 0.04
K2-46 -4.9 5.92 0.11 0.3 6.05 0.07
K2-61 -3.7 2.94 0.10 -2.5 2.99 0.12
K2-79 0.7 2.58 0.07 -3.7 2.62 0.08
K3-3 -15 6.13 0.20 0.4 6.75 0.22
K3-8 0.9 6.10 0.16 -0.6 6.22 0.16
K3-13 -3.4 5.63 0.13 -1.8 5.91 0.14
K3-27 -3.2 4.42 0.09 -15 4.66 0.09
K3-42 -4.6 4.5 0.20 -0.7 3.72 0.10
K3-62 -0.3 2.77 0.05 -1.2 2.89 0.20
K5-7 1.0 5.98 0.28 1.7 6.02 0.20
K5-12 2.3 5.59 0.37 1.8 5.86 0.18
K5-17 -2.8 5.67 0.17 55 5.73 0.14
K5-30 -0.1 4.30 0.10 2.2 4.21 0.07
K5-39 -4.6 4.36 0.12 -1.2 4.41 0.13
K5-49 -19 2.8 0.19 -24 2.86 0.30
K5-74 0.9 2.38 0.08 0.0 2.32 0.10
K6-10 -2.3 4.72 0.12 3.5 4.07 0.27
K6-14 3.1 5.02 0.00 2.9 4.72 0.20
K6-20 2.7 5.16 0.27 1.0 4.90 0.18
K6-32 0.8 4.66 0.09 -0.7 4.79 0.07
K6-40 2.3 4.24 0.10 1.8 4.11 0.07
K6-56 2.8 3.68 0.04 -1.0 3.77 0.10
K6-76 1.0 2.34 0.05 -1.2 2.43 0.12
K7-1 2.9 3.55 0.39 3.7 4.28 0.20
K7-19 1.3 2.40 0.17 3.8 3.31 0.13
K7-29 -0.4 1.78 0.16 3.8 2.71 0.22
K7-38 -0.6 2.75 0.06 0.6 3.03 0.13
K7-52 -3.6 3.24 0.04 0.5 3.12 0.09
K7-64 0.4 2.56 0.04 0.6 2.66 0.10
K11-2 1.0 4.50 0.16 2.8 4.74 0.21
K11-12 -1.0 5.83 -0.01 10.2 6.31 0.19
K11-22 -0.1 6.05 0.17 2.6 6.49 0.18
K11-31 2.1 4.83 0.12 0.1 5.00 0.18
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Table 3. Charge balance, dissolved inorganic carbon, and saturation index in water samples, Kwajalein Island
--Continued
[--, no sample collected]

January through Februa ry 1991 July through August 1991
Dissolved . Dissolved .
ino rganic Saturation ino rganic Saturation
_ carbon ind ex with Charge . carbon ind ex with
Charge balance  (in millimoles respect to balance (in millimoles respect to
Sample (percent) per liter) aragonite (percent) per liter) aragonite
K11-47 -4.7 2.92 0.03 1.7 2.96 0.10
K12-13 1.8 8.06 0.15 2.3 9.03 0.10
K13-0 0.5 6.59 0.26 3.6 6.73 0.26
K13-23 -- -- -- 0.2 8.13 0.13
K14-1 -- -- -- 2.0 7.28 0.15
K14-23 -- -- -- -0.4 6.73 0.10
K15-3 -- -- -- 4.2 12.60 0.13
K15-12 -- -- -- 3.6 13.10 0.09
W12-1 -- -- -- 3.3 6.55 0.21
W12-2 -- -- -- 1.8 7.82 0.22
W12-3 -- -- -- 33 3.57 0.21
W14-1 -- -- -- 4.4 5.51 0.20
W17-2 -- -- -- 0.4 6.94 0.22
W17-3 4.4 13.70 0.19 2.5 14.50 0.20
W17-4 1.2 12.40 0.13 6.2 11.80 0.11
W18-2 2.0 6.80 0.12 6.0 7.24 0.14
CE-1 4.9 11.60 0.26 -- -- --
CE-3 2.4 14.10 0.15 -- -- --
Rain-1 -1.4 0.42 -0.75 -1.2 0.04 -4.39
Rain-2 -1.1 0.19 -1.07 1.8 0.13 -2.05
Rain-3 -2.9 0.27 -2.43 6.2 0.26 -1.46
Rain-4 -4.8 0.14 -3.05 -3.0 0.10 -3.11
SW-1 -0.5 2.05 0.60 -2.0 2.02 0.60
SW-2 -1.7 2.01 0.64 2.4 1.99 0.64
SW-3 -1.0 2.10 0.58 -2.0 1.98 0.69
SW-4 -2.0 2.10 0.55 -- -- --
SW-5 -2.6 2.18 0.59 -- -- --
PW1-2C -- -- -- 1.9 5.66 0.68
PW1-2E -- -- -- 2.7 5.37 0.65
PW1-3C -- -- -- 2.1 6.57 0.53
PW1-3E -- -- -- 3.2 6.17 0.54
PW3-2C -- -- -- 4.1 5.97 0.65
PW3-2E -- -- -- 1.9 5.70 0.62
PW3-3C -- -- -- 0.0 5.90 0.65
PW3-3E -- -- -- -2.5 5.40 0.56
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CHARGE BALANCE, IN PERCENT
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Figure 13. Charge balance compared with chloride concentration in ground water and number of
samples within a specific range of charge balance, Kwajalein Island, 1991.
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Figure 14. Saturation index with respect to aragonite compared with chloride concentration in ground
water, Kwajalein Island, 1991.

In general, excess DIC is higher at shallow depthsity (fig. 19) suggest that reactions releasing DIC occur
than at deep depths, suggesting that the reactions occim the upper part of the aquifer. Finally, the general
mostly in the upper part of the aquifer (fig. 15). Profiles equivalence of g,y and G5 ppindicates the expected
of excess DIC and g, pat sites K1, K2, and K3 (corre- link between organic and inorganic reactions.
sponding to sectioB-B') and sites K5, K6, K7, and K11

) : , : L Most geochemical activity may occur in the unsat-
(corresponding to sectiolrA") as a function of salinity

urated zone of the aquifer. Excess DIC values of unsat-

are Sho‘glncin fidgure 1$H&g s the dif_ference bgtl\gee_nh urated-zone water from sites K1 and K3 were 5to 6 mM
EXCess and &gy, The decrease in excess WItN o depths nearly midway between land surface and the

increasing depth (and increasing salinity) is best seen hater table, and close to values calculated for the upper

sites K3 and K5. The pattern is less obvious but still 54 ¢ the aquifer (fig. 19). Because oxygen is low but
apparent at other sites where either paving, proximity t, s e pjeted in the unsaturated zone (J.M.1. Walker,

the island margin, or presence of contaminants have apyak Ridge National Lab, written commun., 1993), it is
effect on the vertical distribution of constituents. Theselikely that the oxidation of organic matter is proceeding
data suggest that the reactions releasing DIC to aquifeBy oxic respiration, perhaps in the root zone. The car-

v;/]ater occurérllgstrlly In the upper part Of, thle e:qufer, ar(;dbonic acid generated by this respiration stimulates the
the excess then mixes conservatively downward yiss|ytion of carbonate minerals. This linked reaction

through the transition zone. between organic and inorganic carbon can be repre-
Partitioning excess DIC into the organic and inor-sented by combining equations 1 and 5:

ganic source reactions demonstrates that both of these

processes are active within the Kwajalein aquifer. At a

given site, profiles of excess DIC as a function of salin-

CH,0 + O, + CaCQ - 2 HCOy + C&*.  (8)
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Figure 15. Excess dissolved inorganic carbon (DIC) in ground water, Kwajalein Island, 1991.
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This link between organic-matter oxidation and these two end-members creates a zone of transition. The
carbonate dissolution is widely recognized in regulatingpercentage of saltwater increases with depth in the aqui-
carbon geochemistry at large spatial (Mackenzie and fer and proximity to the shoreline.
others, 1993) and temporal (Mackenzie, 1990) scales. The concentration of GIK*, Na*, and qu'ions
At a smaller scale, the role of organic-matter oxidation. - ’ ” L
in stimulating carbonate-mineral dissolution also is rec:s controll_ed_ p”r?c'pa“.y by co_nserv_atwe mixing
ognized experimentally (Smith, 1985) and in ground betwee_n |nf|Itrat|Tg ra|2n+and mtruqu_ng seawal_ter. Con-
water (Drever, 1988). The Gan the unsaturated zone Céentrations of C&, Mg?*, and SQ? in the aquifer are

probably results from the oxidation of organic matter by higher than would be expected from conservative mix-
plant and microbial respiration (Drever, 1988). ing, and reflect the dissolution of carbonate minerals.

Data collected in this study do not allow a rigorous Microbial oxidation of organic matter is indicated
quantification of the different microbial processes thatby low concentrations of dissolved,(he presence of
contribute to organic matter oxidation. Clearly, pro- H,S, the elevated concentrations of nutrients {NO
cesses other than oxic respiration are occurring withinNO,", NH,*, and PQ*"), and levels of DIC exceeding
the aquifer. Hydrogen sulfide, indicative of sulfate  that predicted from conservative mixing and the disso-
reduction, was present in many of the samples. Simi- |ytion of carbonate minerals.
larly, low concentrations of N@+ NO,™ in many water _ _ _
samples, the depletion of fixed N in samples of moder- _ 1he predominant reaction appears to be the disso-
ate salinity, and the change in N/P ratio with salinity lution of carbonate minerals driven by oxic respiration
indicate that nitrate reduction (equation 2) alsois  according to the formula G® + O, + CaCQ -2
actively occurring within the aquifer. Limitations in ~ HCO3™+ Ca#*. Most of this activity appears to occur in
analytical precision, the absence of methane concentréhie unsaturated zone or near the top of the water table.
tion measurements, and difficulties in measuring nitrate
reduction prevent a rigorous calculation of the extent of

the contributing organic-oxidation reactions (equanonsuncontaminated sites. At least some of the contaminant
1 through 4). . . . . .
material probably is serving as a microbial food source

Sites contaminated with hydrocarbons (U.S. Army and is being actively degraded to inorganic carbon.
Environmental Hygiene Agency, 1990; 1991) tend to

have higher values of excess DIC than uncontaminated

sites. In particular, sites near the old power plant and REFERENCES CITED

fuel farm (W17, CE, K12, and K15) typically had
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